Yaequinolones, New Insecticidal Antibiotics Produced by Penicillium sp. FKI-2140

II. Structural Elucidation

Ryuji Uchida, Rie Imasato, Hiroshi Tomoda, Satoshi Ōmura

Received: June 29, 2006 / Accepted: October 9, 2006
© Japan Antibiotics Research Association

Abstract

The structure and relative stereochemistry of yaequinolones, fungal insecticidal antibiotics, were elucidated by spectroscopic studies, including NMR spectral analyses. Yaequinolones possess a p-methoxyphenylquinolinone skeleton modified with different isoprenyl-derived side chains.

Keywords yaequinolone, insecticide, fungal metabolites, structural elucidation, Penicillium sp., p-methoxyphenylquinolinone

Introduction

Yaequinolones and structurally related compounds (1~16, Fig. 1) were isolated from the culture broth of Penicillium sp. FKI-2140 as insecticidal antibiotics against brine shrimp (Artemia salina). The fermentation, isolation and biological activity were described in the preceding paper [1]. In this study, we describe the elucidation of the structure of $\mathbf{1 \sim 7}$ and show that these compounds possess a quinolinone core with a variety of isoprenyl-derived side chains. In progress of this study, compounds $\mathbf{1}$ and 2 were identified as $3 R^{*}, 4 S^{*}$-dihydroxy-3,4-dihydro-4-(4'-methoxyphenyl)-2($1 H$)-quinolinone and $3 R^{*}, 4 R^{*}$-dihydroxy-3,4-dihydro-4-(4'-methoxyphenyl)-2(1 H)-quinolinone [3], respectively. The structural elucidation of $\mathbf{8}$ and $\mathbf{9}$, having a p-methoxyphenylquinolinone skeleton fused with an
isoprenyl pyran ring, was reported elsewhere [2].

Results

Structural Elucidation

The physico-chemical properties and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1}$ to 7 are summarized in Tables 1,2 and $3 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 3}$ and $\mathbf{1 4}$ are also shown for comparison. From the MS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (data not shown), $\mathbf{1 0}$ to 16 were identified as 4-hydroxy-3,4-dihydro-3-methoxy-4-(4'-methoxyphenyl)-2(1H)-quinolinone (quinolinone A, 10) [4], 4,5-dihydroxy-3,4-dihydro-3-methoxy-4-(4'-methoxyphenyl)-2(1H)-quinolinone (quinolinone $\mathrm{B}, 11$) [4], peniprequinolone (12) [5], penigequinolones A and B $(13,14)[5,6], 4^{\prime}$-methoxycyclopeptin (15) [5] and trans-dehydro-4'-methoxycyclopeptin (16) [7]. Compounds 1 and 2 were named yaequinolones A1 and A2 in this study, therefore these structural elucidations were described blow.

Yaequinolones A1 (1) and A2 (2): The molecular formulas of $\mathbf{1}$ and $\mathbf{2}$ were revealed to be $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$ by HR-FAB-MS, thus requiring 10 degrees of unsaturation. The similarity in the ${ }^{13} \mathrm{C}$ NMR spectra (Table 3) of $\mathbf{1}$ and $\mathbf{2}$ strongly suggested that they have the same planar structure. The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ and $\mathbf{2}$ showed 16 carbons, which were classified into 1 methyl, $8 s p^{2}$ methine, $1 s p^{3}$ methine, and 6 quaternary carbons by analysis of the DEPT spectra. The connectivity of proton and carbon atoms was
H. Tomoda (Corresponding author), R. Uchida: School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan, E-mail: tomodah@pharm.kitasato-u.ac.jp
R. Imasato, S. Ōmura: Kitasato Institute for Life Sciences, \& Graduate School of Infection Control Sciences, Kitasato University and The Kitasato Institute, 5-9-1 Shirokane, Minatoku, Tokyo 108-8641, Japan

Yaequinolone A1 (1)

Fig. 1 Structures of yaequinolones and related compounds.

1) Quinolinone A: 4-Hydroxy-3,4-dihydro-3-methoxy-4-(4'-methoxyphenyl)-2(1H)-quinolinone. 2) Quinolinone B: 4,5-Dihydroxy-3,4-dihydro-3-methoxy-4-(4'-methoxyphenyl)-2(1 H)-quinolinone.
established according to the HMQC spectra. As shown by the bold lines for $\mathbf{1}$ and $\mathbf{2}$ in Fig. 2, a partial structure I $(-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-)$ and two partial structures II ($-\mathrm{CH}=\mathrm{CH}-$) become clear from the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra. The ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ long-range couplings of ${ }^{2} J$ and ${ }^{3} J$ in the HMBC spectra (Fig. 2) proved the following linkages. 1) The longrange couplings from $\mathrm{H} 5(\delta 7.68)$ to $\mathrm{C} 8 \mathrm{a}(\delta 133.4)$ and from $\mathrm{H} 8(\delta 6.85)$ to $\mathrm{C} 4 \mathrm{a}(\delta 130.3)$ suggested the presence of a 1,2-disubstituted benzene ring containing the partial structure I. 2) The long range couplings from $\mathrm{H}^{\prime}\left(\mathrm{H}^{\prime}\right)(\delta$ 7.21) to $\mathrm{C}^{\prime}(\delta 159.5)$ and from $\mathrm{H}^{\prime}\left(\mathrm{H}^{\prime}\right)(\delta 6.73)$ to $\mathrm{C1}^{\prime}$ (δ 131.6) suggested the presence of a 1,4 -disubstituted benzene ring containing the two partial structures II. Furthermore, long-range coupling was observed from oxymethyl proton $4^{\prime}-\mathrm{OCH}_{3}(\delta 3.71)$ to C^{\prime}, indicating that this benzene ring is a p-methoxyphenyl group. 3) The longrange couplings from $\mathrm{H} 3(\delta 4.72)$ to $\mathrm{C} 4(\delta 77.1), \mathrm{C} 4 \mathrm{a}, \mathrm{C} 2$
($\delta 170.7$) and $\mathrm{C1}^{\prime}$ and from H 5 and $\mathrm{H}^{\prime}\left(\mathrm{H}^{\prime}\right)$ to C 4 suggested that the p-methoxyphenyl group is attached to C 4.4) The presence of an amide group ($\delta_{\mathrm{H}} 8.07, \delta_{\mathrm{C}} 170.7$) was indicated by the NMR data. Considering the degree of unsaturation, it was thought that a quinolinone ring was formed from the disubstituted benzene ring and the amide group. Furthermore, considering the molecular formula, the two remaining protons should exist as two hydroxy groups at C3 and C4 of the quinolinone ring. Thus, identical planar structures were elucidated for $\mathbf{1}$ and 2, as shown in Fig. 2.

Yaequinolone B (3): The molecular formula of $\mathbf{3}$ was determined to be $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}$ by HR-FAB-MS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 2 and 3) resembled those of 2 except for the carbon signals of C3, C5 and C6. The differences are explained below. As shown by the bold lines for 3 in Fig. 2, the partial structure III $(-\mathrm{CH}=\mathrm{CH}-)$ became clear from the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra, and the coupling

Table 1 Physico-chemical properties of yaequinolones 1 to $\mathbf{7}$

	1	2	3	4
Appearance	Pale yellow powder	Pale yellow powder	Pale yellow powder	Pale yellow powder
Molecular weight	285	285	383	483
Molecular formula	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}$	$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{7}$
HRFAB-MS				
calcd	$308.0899(\mathrm{M}+\mathrm{Na})^{+}$	$308.0899(\mathrm{M}+\mathrm{Na})^{+}$	$382.1291(\mathrm{M}-\mathrm{H})^{-}$	$483.2257(\mathrm{M})^{+}$
found	$308.0888(\mathrm{M}+\mathrm{Na})^{+}$	$308.0884(\mathrm{M}+\mathrm{Na})^{+}$	382.1306 (M-H) ${ }^{-}$	$483.2265(\mathrm{M})^{+}$
$U V \lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\varepsilon)$	$\begin{aligned} & 209(40,800), 226(19,200), \\ & 250(12,700), 280(4,600) \end{aligned}$	$\begin{aligned} & 208(43,000), 227(18,900), \\ & 250(11,300), 283(5,100) \end{aligned}$	$\begin{aligned} & 228(15,600), 334(7,900), \\ & 357(8,900) \end{aligned}$	$\begin{aligned} & 220(25,900), 279(13.800), \\ & 290(10,400) 324(12,900) \end{aligned}$
$\mathrm{IR} v_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}$	$\begin{aligned} & 3426,2910,1683,1606, \\ & 1508,1301,1247,1178 \\ & 1137,1027,759 \end{aligned}$	$\begin{aligned} & 3253,2925,1689,1602, \\ & 1509,1380,1253,1174 \\ & 1081,1033,811,769 \end{aligned}$	$\begin{aligned} & 3428,2925,1629,1259 \\ & 1031,806 \end{aligned}$	$\begin{aligned} & 3315,2964,1689,1608, \\ & 1509,1378,1257,1172, \\ & 1081,1033,806 \end{aligned}$
$[\alpha]_{\text {d }}^{23}(\mathrm{EtOH})$	-32.2 (c 0.1)	-50.9 (c 0.1)	$+41.2(c 0.1)$	+32.4 (c 0.1)
Solubility				
soluble	$\mathrm{CHCl}_{3}, \mathrm{MeOH}$, Acetone, EtOAc, DMSO			
insoluble	Hexane, $\mathrm{H}_{2} \mathrm{O}$	Hexane, $\mathrm{H}_{2} \mathrm{O}$	Hexane, $\mathrm{H}_{2} \mathrm{O}$	Hexane, $\mathrm{H}_{2} \mathrm{O}$
	5	6	7	
Appearance	Pale yellow powder	Pale yellow powder	Pale yellow powder	
Molecular weight	483	381	465	
Molecular formula HRFAB-MS	$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{7}$	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}$	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{6}$	
calcd	$506.2155(\mathrm{M}+\mathrm{Na})^{+}$	$381.1576(\mathrm{M})^{+}$	$465.2151(\mathrm{M})^{+}$	
found	$506.2156(\mathrm{M}+\mathrm{Na})^{+}$	$381.1574(\mathrm{M})^{+}$	$465.2151(\mathrm{M})^{+}$	
$U V \lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\varepsilon)$	$\begin{aligned} & 221(20,700), 279(12,600) \text {, } \\ & 288(9,500), 324(10,700) \end{aligned}$	$\begin{aligned} & 223(18,800), 280(8,400), \\ & 291(8,300), 324(6,800) \end{aligned}$	$\begin{aligned} & 219(20,600), 279(11,800) \text {, } \\ & 287(9,100), 324(10,800) \end{aligned}$	
$\mathrm{IR} v_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}$	$\begin{aligned} & 3428,2937,1687,1610, \\ & 1511,1378,1257,1176, \\ & 1072,1033,825 \end{aligned}$	```2937, 1687, 1600, 1255, 1174, 1076, 1037, }82```	$\begin{aligned} & 3426,2925,1689,1608, \\ & 1461,1261,1093,1031, \\ & 806 \end{aligned}$	
$[\alpha]_{\text {d }}^{23}(\mathrm{EtOH})$	+56.1 (c 0.1)	$+51.2(c 0.1)$	+76.9 (c 0.1)	
Solubility				
soluble	$\mathrm{CHCl}_{3}, \mathrm{MeOH}$, Acetone, EtOAc, DMSO	$\mathrm{CHCl}_{3}, \mathrm{MeOH}$, Acetone, EtOAc, DMSO	$\mathrm{CHCl}_{3}, \mathrm{MeOH}$, Acetone, EtOAc, DMSO	
insoluble	Hexane, $\mathrm{H}_{2} \mathrm{O}$	Hexane, $\mathrm{H}_{2} \mathrm{O}$	Hexane, $\mathrm{H}_{2} \mathrm{O}$	

constant $(16.5 \mathrm{~Hz})$ observed between $\mathrm{H} 1^{\prime \prime}(\delta 7.80)$ and $\mathrm{H} 2^{\prime \prime}$ (δ 6.70) indicated that these olefin protons are oriented in the trans position. According to HMBC experiments, the cross peaks from $\mathrm{H}^{\prime \prime}$ and $\mathrm{H}_{3} 4^{\prime \prime}(\delta 2.35)$ to $\mathrm{C}^{\prime \prime}(\delta 199.4)$ showed the presence of an (E)-3-oxo-1-butenyl group containing the partial structure III. Furthermore, the cross peaks from $\mathrm{H} 7(\delta 7.50)$ to $\mathrm{C} 1^{\prime \prime}(\delta 138.1)$, from $\mathrm{H} 1^{\prime \prime}$ to C 7 ($\delta 129.7$) and from H 2 " to $\mathrm{C} 6(\delta 119.3)$ indicated that the (E)-3-oxo-1-butenyl group is attached to C6. The cross peaks from the methoxy protons of $3-\mathrm{OCH}_{3}(\delta 3.62)$ to C 3 (δ 84.0) and from H3 ($\delta 3.72$) to the methoxy carbon $(\delta$ 59.7), indicated that the methoxy group is connected to C3.

Finally, the cross peaks from $\mathrm{OH} 5(\delta 9.45)$ to $\mathrm{C} 5(\delta 157.4)$ and C6 indicated the hydroxy group exists at C5. Thus, the planar structure for 3 was elucidated to be that shown in Fig. 2, which satisfied the molecular formula.

Yaequinolone C (4): The molecular formula of 4 was determined to be $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{7}$ by HR-FAB-MS, thus requiring 12 degrees of unsaturation. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 2 and 3) resembled those of $\mathbf{1 3}$ or $\mathbf{1 4}$ except for the carbon signals of the tetrahydropyran ring. As shown by the bold lines for 4 in Fig. 2, the partial structure IV $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}-\right)$ became clear from the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum. According to HMBC experiments, the cross
Table $2{ }^{1} \mathrm{H}$ NMR spectral data of yaequinolones 1 to 7, $\mathbf{1 3}$ and 14

Position	1	2	3	4	5	6	7	13	14
3	4.72, s	4.84, s	3.72, s	3.68, s	3.71, d (1.1)	3.70, d (1.0)	3.68, d (1.1)	3.69, s	3.70, s
5	7.68, br. d (7.7)	6.78 , dd (8.0, 1.1)							
6	7.20, br. t (7.7)	6.97 , dt (8.0, 1.1)							
7	7.30, br. t (7.7)	7.29, dt (8.0, 1.1)	7.50, d (8.1)	7.35, d (8.4)	7.35, d (8.3)	7.45, d (8.4)	7.35, d (8.1)	7.38, d(8.3)	7.39, d (8.3)
8	6.85, d (7.7)	6.86, dd (8.0, 1.1)	6.40, d (8.1)	6.32, d (8.4)	6.35, d (8.3)	6.34, d (8.4)	6.31, d (8.1)	6.36, d (8.3)	6.36, d (8.3)
$2^{\prime}, 6^{\prime}$	7.21, d (7.8)	7.46, d (8.9)	7.16, d (8.3)	7.16, d (8.4)	7.18, d (9.0)	7.17, d (8.9)	7.17, d (9.2)	7.19, d (8.8)	7.18, d (8.8)
$3^{\prime}, 5^{\prime}$	6.73 d (7.8)	6.98, d (8.9)	6.84, d (8.3)	6.81, d (8.4)	6.82, d (9.0)	6.82, d (8.9)	6.82, d (9.2)	6.82, d (8.8)	6.81, d (8.8)
$1{ }^{\prime \prime}$			7.80, d (16.5)	6.77, d (15.7)	6.69, d(16.7)	6.80, d (16.5)	6.84, d (16.0)	6.73, d (16.6)	6.73, d (16.6)
2 "			6.70, d (16.5)	6.24, d (15.7)	6.14, d (16.7)	6.84, d (16.5)	6.33, d (16.0)	6.14, d (16.6)	6.13, d (16.6)
$4{ }^{\prime \prime}$			2.35 , s	2.00, ddd (12.4, 7.5, 2.0)	1.76, ddd (13.7, 4.2, 3.1)	5.06, br. s	2.03, m	1.81, m	1.81, m
				1.78, ddd (12.4, 7.2, 2.4)	1.69, dt (13.7, 3.1)	5.02, br. s	1.87, m	1.71, m	1.71, m
$5^{\prime \prime}$				1.91, ddd (15.0, 6.6, 2.0)	1.52, dt (13.0, 3.1)	1.95, s	2.07, m	1.45, m	1.45, m
				1.86, ddd (15.0, 7.5, 2.4)	1.36, m		1.79, m	1.33, m	1.33, m
$6^{\prime \prime}$				3.89, dd (7.2, 6.6)			4.46, dd (8.7, 6.4)		
$7{ }^{\prime \prime}$				1.41, s	4.60, s		1.42, s	3.38, d (11.2)	3.37, d (11.2)
								3.23, dd (11.2, 2.0)	3.22, dd (11.2, 2.0)
$8^{\prime \prime}$				1.34, s	1.34, s		1.30, s	1.30, s	1.30, s
$9{ }^{\prime \prime}$				1.24, s	0.87, s		5.08 , br. s	0.79, s	0.79, s
							4.82, br. s		
$10^{\prime \prime}$				1.13, s	0.95, s		1.75, s	1.00, s	1.00, s
$3-\mathrm{OCH}_{3}$			3.62, s	3.60, s	3.60, s	3.61, s	3.60, s	3.61, s	3.61, s
$4^{\prime}-\mathrm{OCH}_{3}$	3.71, s	3.85, s	3.77, s	3.76, s	3.76, s	3.76, s	3.76, s	3.75, s	3.75 , s
NH	8.07, br. s	7.70, br. s	7.50, br. s	7.28, br.s	7.75, br. s	7.37, br. s	7.44, br. s	8.44, br.s	8.44, br. s
$3-\mathrm{OH}$	ND	ND							
$4-\mathrm{OH}$	ND	ND	4.61, br. s	4.35, br. s	4.56, br. s	4.56, br. s	4.53, br. s	4.60, br. s	4.60, br. s
$5-\mathrm{OH}$			9.45, br. s	9.16, br.s	9.16, br.s	9.17, br.s	9.11, br. s	9.12, br.s	9.12, br. s
$7{ }^{\prime \prime}-\mathrm{OH}$					ND				
$8{ }^{\prime \prime}-\mathrm{OH}$				2.18, br. s					

[^0]Table $3{ }^{13} \mathrm{C}$ NMR spectral data of yaequinolones $\mathbf{1}$ to 7, $\mathbf{1 3}$ and $\mathbf{1 4}$

Position	1	2	3	4	5	6	7	13	14
2	170.7	170.2	165.4	165.5	165.5	165.4	165.5	166.2	166.2
3	75.5	73.7	84.0	84.3	84.2	84.3	84.2	84.2	84.1
4	77.1	76.5	78.7	78.1	78.7	78.8	78.8	78.7	78.6
4a	130.3	127.5	111.5	110.8	110.9	110.8	110.9	110.8	110.8
5	126.5	130.5	157.4	155.3	155.2	155.6	155.4	155.0	155.0
6	125.3	124.3	119.3	121.9	121.6	122.4	121.1	121.9	121.9
7	129.3	130.7	129.7	127.8	127.5	127.3	127.4	127.4	127.3
8	116.0	116.1	107.6	106.9	106.9	107.1	106.4	107.0	107.0
8 a	133.4	135.8	137.5	134.3	133.6	134.3	134.1	134.3	134.2
1^{\prime}	131.6	132.4	128.4	129.0	128.9	129.1	129.1	129.0	129.0
$2^{\prime}, 6^{\prime}$	128.4	127.9	127.8	127.9	127.8	127.9	127.7	127.4	127.3
$3^{\prime}, 5^{\prime}$	113.9	114.1	114.5	114.3	114.3	114.4	113.9	114.2	114.2
4^{\prime}	159.5	159.3	160.5	160.1	160.3	160.2	160.3	160.2	160.2
$1{ }^{\prime \prime}$			138.1	121.1	123.4	122.6	120.4	123.2	123.1
2 "			126.8	135.6	134.4	131.2	135.5	134.3	134.3
$3 \prime \prime$			199.4	83.3	77.1	142.9	83.2	74.4	74.3
$4 \prime$			26.9	38.5	30.4	116.7	39.0	30.9	31.0
$5 \prime \prime$				26.5	34.2	18.7	31.2	33.5	33.5
$6{ }^{\prime \prime}$				85.8	34.1		82.3	29.6	29.6
$7{ }^{\prime \prime}$				26.7	97.8		26.5	72.7	72.7
$8^{\prime \prime}$				71.0	31.1		145.7	29.2	29.1
$9 \prime \prime$				27.5	26.2		110.1	26.5	26.5
10"				24.4	16.7		18.5	24.0	24.0
$3-\mathrm{OCH}_{3}$			59.7	58.9	58.8	59.0	58.5	58.9	58.9
$4^{\prime}-\mathrm{OCH}_{3}$	55.3	55.4	55.4	55.4	55.2	55.4	55.0	55.2	55.2

Spectra taken at 150 MHz . Chemical shifts are shown with reference to CDCl_{3} as 77.0 ppm .
peaks from $\mathrm{H} 5^{\prime \prime}(\delta 1.86)$ to $\mathrm{C} 3^{\prime \prime}(\delta 83.3)$ and $\mathrm{C} 8^{\prime \prime}(\delta 71.0)$, from $\mathrm{H}_{3} 9^{\prime \prime}(\delta 1.24)$ to $\mathrm{C}^{\prime \prime}(\delta 85.8), \mathrm{C}^{\prime \prime}$ and $\mathrm{C} 10^{\prime \prime}(\delta 24.4)$, from $\mathrm{H}_{3} 10^{\prime \prime}(\delta 1.13)$ to $\mathrm{C}^{\prime \prime}, \mathrm{C} 8^{\prime \prime}$ and $\mathrm{C} 9^{\prime \prime}(\delta 27.5)$ and from $\mathrm{H}_{3} 7^{\prime \prime}(\delta 1.41)$ to $\mathrm{C} 3^{\prime \prime}$ and the olefinic carbon $\mathrm{C} 2^{\prime \prime}(\delta 135.6)$ lead to a bigger partial structure V containing IV. The cross peak from $\mathrm{H} 7(\delta 7.35)$ to $\mathrm{C} 1^{\prime \prime}(\delta 121.1)$, from $\mathrm{H} 1^{\prime \prime}(\delta 6.77)$ to $\mathrm{C} 5(\delta 155.3)$ and from $\mathrm{H} 2^{\prime \prime}(\delta 6.24)$ to $\mathrm{C} 6(\delta 121.9)$ indicated that the partial structure V is attached to C 6 . Taking the remaining atoms (one hydrogen and two oxygens) and the chemical shifts of $\mathrm{C} 3^{\prime \prime}, \mathrm{C} 6^{\prime \prime}$ and $\mathrm{C} 8^{\prime \prime}$ (bound to an oxygen) into consideration, it was concluded that $\mathrm{C} 3^{\prime \prime}$ and $\mathrm{C} 6^{\prime \prime}$ should connect to the same oxygen to form a furan ring and a hydroxy group is attached to $\mathrm{C} 8{ }^{\prime \prime}$. Thus, the structure of 4 was elucidated to be that shown in Fig. 2, which satisfied the molecular formula and the degree of unsaturation.

Yaequinolone D (5): The molecular formula of 5 was revealed to be $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{7}$ by HR-FAB-MS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 2 and 3) resembled those of $\mathbf{1 3}$ or $\mathbf{1 4}$ except for the carbon signal of C 7 ". The ${ }^{13} \mathrm{C}$ NMR chemical
shift of $\mathrm{C} 7^{\prime \prime}$ indicated the presence of the $s p^{3}$ dioxy quaternary carbon ($\delta 97.8$), and we concluded that the hydroxy group was attached to C 7 ". ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC experiments supported the structure of $\mathbf{5}$ as shown in Fig. 2.

Yaequinolone E (6): The molecular formula of 6 was revealed to be $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}$ by HR-FAB-MS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 2 and 3) resembled those of $\mathbf{3}$ except for the carbon signal of $\mathrm{C} 3{ }^{\prime \prime}$. In HMBC experiment examining 6 (Fig. 2), the cross peaks from $\mathrm{H} 2^{\prime \prime}(\delta 6.84)$ and $\mathrm{H}_{3} 5^{\prime \prime}(\delta 1.95)$ to $\mathrm{C} 3^{\prime \prime}(\delta 142.9)$ and $\mathrm{C} 4^{\prime \prime}(\delta 116.7)$ and from $\mathrm{H}_{2} 4^{\prime \prime}(\delta 5.06,5.02)$ to $\mathrm{C}^{\prime \prime}(\delta 131.2)$ and $\mathrm{C} 5^{\prime \prime}(\delta 18.7)$ indicated the presence of a methylene attached to C3" instead of a ketone of $\mathbf{3}$. Thus, the structure of $\mathbf{6}$ was elucidated to be that shown in Fig. 2.

Yaequinolone F (7): The molecular formula of 7 was revealed to be $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{6}$ by HR-FAB-MS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 2 and 3) resembled those of 4 except for the carbon signals of $\mathrm{C} 8^{\prime \prime}$ and $\mathrm{C} 9^{\prime \prime}$. In HMBC experiments, the cross peaks from $\mathrm{H}^{\prime \prime}(\delta 4.46)$ to $\mathrm{C} 9^{\prime \prime}(\delta$

1

4

6

5

7

Fig. $2{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY and HMBC experiments of $\mathbf{1}$ to $\mathbf{7}$.
110.1), $\mathrm{H}_{3} 10^{\prime \prime}(\delta 1.75)$ to $\mathrm{C} 8^{\prime \prime}(\delta 145.7)$ and $\mathrm{C} 9^{\prime \prime}$ and from $\mathrm{H}_{2} 9^{\prime \prime}(\delta 5.08,4.82)$ to $\mathrm{C}^{\prime \prime}(\delta 82.3), \mathrm{C} 8^{\prime \prime}$ and $\mathrm{C} 10^{\prime \prime}(\delta 18.5)$ showed the presence of a methylene attached to $\mathrm{C}^{\prime \prime}$. Thus, the structure of 7 was elucidated to be that shown in Fig. 2.

Relative Stereochemistry of p-Methoxyphenyl Quinolinone Skeleton

Compounds $\mathbf{1}$ and $\mathbf{2}$ have two chiral carbons of C3 and C4 in the quinolinone ring. Their relative stereochemistry was elucidated by NOE experiments (Fig. 3). An NOE was observed between H 3 and $\mathrm{H} 2^{\prime}\left(\mathrm{H}^{\prime}\right)$, but the intensity of NOE in $\mathbf{2}(7.1 \%)$ was much stronger than that in $\mathbf{1}(0.75 \%)$. These results indicated that the p-methoxyphenyl group and $3-\mathrm{OH}$ in 1 are located on the same face of the quinolinone ring, while those in $\mathbf{2}$ are located on the opposite side. Therefore, the relative stereochemistry of $\mathbf{1}$ and $\mathbf{2}$ was determined to be $3 R^{*}, 4 S^{*}$ and $3 R^{*}, 4 R^{*}$, respectively.

1

2

Fig. 3 NOE experiments of $\mathbf{1}$ and $\mathbf{2}$.

NOE experiments for $\mathbf{3}$ to 7 showed similar results to those for $\mathbf{2}$, indicating that the stereochemistry of their quinolinone skeleton is $3 R^{*}, 4 R^{*}$.

Discussion

During this study we isolated 16 structurally related compounds from the culture broth of Penicillium sp. FKI-2140. Compounds $\mathbf{1 5}$ and $\mathbf{1 6}$ are diketodiazepins. Compounds 1, 2, 10 and $\mathbf{1 1}$ have the fundamental p methoxyphenyl quinolinone skeleton, while the others have an additional isoprenyl derived (C 5 or C 10 unit) side chain attached to the fundamental skeleton.

Biosynthetic studies of this series of compounds have not been reported so far, but the biosynthetic pathway could be speculated to be as follows [5]. First, diketodiazepins 15 and 16 are biosynthesized from anthranilic acid and tyrosine, which are de- and re-cyclized to form the fundamental phenylquinolinones (1, 2, 10 and 11). Similar cyclization was reported in the biosynthesis of a phenylquinolinic ring in fungal viridicatin [7, 8]. Then, an isoprenyl (C5)- or geranyl (C10)-derived side chain are linked to the skeleton to form 3, $\mathbf{6}$ and $\mathbf{1 2}$ or 4, 5, 7, $\mathbf{1 3}$ and 14, respectively. Finally, intramolecular dehydration occurs to produce $\mathbf{8}$ and 9 .

Although the relative stereochemistry of the side chains in yaequinolones could not be defined, that of the quinolinone skeleton was determined by NOE experiments. Compound 1 has the $3 R^{*}, 4 S^{*}$ stereochemistry, while 2 to $\mathbf{1 2}$ have $3 R^{*}, 4 R^{*}$. In this study $\mathbf{1 3}$ and $\mathbf{1 4}$ were separated by using a chiral column, though they were originally isolated as a mixture. They were both found to have $3 R^{*}, 4 R^{*}$ stereochemistry. Thus, only $\mathbf{1}$ has different stereochemistry, probably due to racemization during cyclization from $\mathbf{1 5}$ or $\mathbf{1 6}$.

Experimental

Spectroscopic Measurements

NMR spectra were recorded on a Varian Inova 600 spectrometer $\left({ }^{2-3} J_{\mathrm{CH}}=8 \mathrm{~Hz}\right.$ in HMBC). Chemical shifts are shown in δ values (ppm) relative to chloroform at 7.26 ppm for ${ }^{1} \mathrm{H}$ NMR and chloroform- d_{1} at 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR. FAB mass spectrometry was conducted on a JEOL JMSAX505H spectrometer. UV and IR spectra were measured with a Beckman DU640 spectrophotometer and a Horiba FT-210 Fourier transform infrared spectrometer, respectively.

Optical rotations were recorded on a JASCO model DIP181 polarimeter.

Acknowledgements We are grateful to Ms. Akiko Nakagawa, Ms. Chikako Sakabe and Ms. Noriko Sato, School of Pharmacy, Kitasato University for measurements of mass and NMR spectra. This work was supported by a grant for the 21 st Century COE Program and a grant for Scientific Research on Priority Areas (No. 16073215) from the Ministry of Education, Culture, Sports, Science and Technology, Japan

References

1. Uchida R, Imasato R, Yamaguchi Y, Masuma R, Tomoda H, Ōmura S. Yaequinolones, new insecticidal antibiotics produced by Penicillium sp. FKI-2140. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot. 59: 646-651 (2006)
2. Uchida R, Imasato R, Shiomi K, Tomoda H, Ōmura S. Yaequinolones J1 and J2, novel insecticidal antibiotics from Penicillium sp. FKI-2140. Org Lett 7: 5701-5704 (2005)
3. He J, Lion U, Sattler I, Gollmic FA, Grabley S, Cai J, Meiners M, Schünke H, Schaumann K, Dechert U, Krohn M. Diastereomeric quinolinone alkaloids from the marinederived fungus Penicillium janczewskii. J Nat Prod 68: 1397-1399 (2005)
4. Hayashi H, Nakatani T, Inoue Y, Nakayama M, Nozaki H. New dihydroquinolone toxic to Artemia salina produced by Penicillium sp. NTC-47. Biosci Biotechnol Biochem 61: 914-916 (1997)
5. Kusano M, Koshino H, Uzawa J, Fujioka S, Kawano T, Kimura Y. Nematocidal alkaloids and related compounds produced by the fungus Penicillium cf. simplicissimum. Biosci Bootechnol Biochem 64: 2559-2568 (2000)
6. Kimura Y, Kusano M, Koshino H, Uzawa J, Fujioka S, Tani K. Penigequinolone A and B , pollen-growth inhibitors produced by Penicillium sp. NO. 410. Tetrahedron Lett 37: 4961-4964 (1996)
7. Framm J, Nover L, el-Azzouny A, Richter H, Winter K, Werner S, Luckner M. Cyclopeptin and dehydrocyclopeptin. Intermediates in the biosynthesis of cyclopeptin-viridicatin alkaloids in Penicillium cyclopium Westling. Eur J Biochem 37: 78-85 (1973)
8. Nover L, Luckner M. On the biosynthesis of cyclopenin and cyclopenol, benzodiazepine alkaloids from Penicillium cyclopium Westling. Eur J Biochem 10: 268-273 (1969)

[^0]: Spectra taken at 600 MHz . Chemical shifts are shown with reference to CDCl_{3} as 7.26 ppm . J values are given in Hz in parentheses

